
Best Available Copy

___~~~

~~
'

."_-uY~mWU

Wwwaft" ft .ýd fto 0" wo &4 1I~,~9m. 0A D-A 233 134 Final 16 Jan 1991 to 01 Mar 1993

4 TnlAMu.STTR Ada Compiler Validation Summary Report: L FUND MUMRS

Verdix Corporation, VAda-110-6161, Version 6.0.2, DECstation
3100 (Host) to DECstation 3100 (Target), 900228W1.11001

IAUR=4S)

Wright-Patterson AFB, Dayton, OH
USA

7. PLVON" P4Ma M s W J04 ~~AMAcuuau L PEFOF #GOA OAZA
Ada Validation'Facility, Language Control Facility ASD/SCEL AVF-VSR-363.0191
Bldg. 676, Rm 135
Wright-Patterson AFB
Dayton, OH 45433

9. WSOMMh 10W~rOA AMNCY M&(US AAMEMS)(16. 1"EHOAM.CNMVTMAJGAWY
Ada Joint Program Office PAPORT XG.RAEF
United States Department of Defense
Waihington, D.C. 20301-3081

. WUOwENARY N=3-S

12 08 1 PW aIrv g.44t S w u&Xr T 12L c0 mPm U COM

Approved for public release; distribution unlimited.

Verdix Corporation, VAda-110-6161, Version 6.0.2, Wright-Patterson AFB, OH, DECstation
3100 (Host to-Target), ACVC 1.11.

III

l.3 C71m Ada programming language, Ada Compiler Validation 15. W.*aOF F s
Su=ary Report, Ada Compiler Validation Capability, Validation
Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- IAo 0juac
ST;-18154d Joint Progran Office

pap=4 co no.r MLSCA T ~ OFS SECS.,R!T CLAsaT.j I0.L U1AT5 O NrA44TPAC

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

.oi '. 19 !1!2

Certificate Information

The following Ada implementation was tested and determined to pass ACVC

1.11. Testing was completed on 28 February 1990.

Compiler Name and Version: VAda-110-6161, Version 6.0.2

Host Computer System: DECstation 3100, ULTRIX 3.1

Target Computer System: DECstation 3100, ULTRIX 3.1

Customer Agreement Number: 90-01-15-VRX

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
900228W1.11001 is awarded to Verdix Corporation. This certificate expires
on 1 March 1993.

This report has been reviewed and is approved.

Add Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Validation Organization
Director, Computer & Software Engineering Division
Institute for Defense Analyses Aocession For
Alexandria VA 22311 NTIS GRA&I

DTIC TAB 0
Unannounced 0

• • • Justiftcatio

Ad'a Joint Program Office By
Dr. John Solomond, Director Distribution/
Department of Defense Availability Codes
Washington DC 20301

Ava..1 nnd/or
' Dist Special

i D

yJ(

I II

AVF Control Number: AVF-VSR-363.0191
16 January 91
90-01-15-VEX

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 900128V1.11001
Verdix Corporation

VAda-110-6161, Version 6.0.2
DECstation 3100 -> DECstation 31C0

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson APB OH 45433-6503

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

DECLARATION OF CONFORMANCE

Customer: Verdix Corporation

Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: VAda-1l0-6161, Version 6.0.2

Host Computer System: DECstation 3100, ULTRIX 3.1

Target Computer System: DECstation 3100, ULTRIX 3.1

Customer's Declaration

I, the undersigned, representing Verdix Corporation, declare that Verdix
Corporation has no knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation listed in this
declaration. I declare that the Verdix Corporation is the owner of the
above 5mplementation and the certificates shall be awarded in the name of
the ovner's corporate name.

50sl ,Date:_______________

Verdix Corporation
1600 NV Compton Drive
Suite 357
Beaverton, Oregon 97006

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 AC.C TEST CLASSES1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 VITEDRAWN TESTS..2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-3

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro9O] against the Ada Standard lAda83| using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90J. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the 'Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all staiements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which perfcrmed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83J Reference Manual for the Ada Programming Language,
ANSI/MIL-ST-D--- 5A",Fe-au" 1983 and ISO 865i-1987.

[Pro9O] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
MrIce, August 1990.

[!JG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to vhich it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRTl3,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Tdentity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additiona] changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 aad [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executablu form and
execution thereof.

Ads Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consistin- of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocations scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro9O].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrecL and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The folloving tests have been withdrawn by the AVO. The rationale for
vithdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 31 January 1990.

E28005C B41308B C45114A C45612B C45651A C46022A
849008A A74006A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A C97116A BA2O11A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2B15C BD3006A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4O51D CD5111A CD7004C ED700SD
CD7005E AD7006A CD7006E AD72O1A AD7201E BD8002A
BD8004C CD9005A CD9005B CDA2O1E CE2107I CE2119B
CE3111C CE3118A CE3411B CE3412B CE3812A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Cýmnentaries are included as
appropriate.

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 te3ts) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)

2-1

IMPLEMENTATION DEPENDENCIES

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type LONG INTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55B07A B55B09C B86001V C86006C
CD7101F

C35702B, C35713C, B86001U, and C86006G check for the predefined type
LONG FLOAT.

C35713D and B8600lZ check for a predefined floating-point type with a
nan other than FLOAT, LONGFLOAT, or SHORT-FLOAT.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this implementation
that range exceeds the safe numbers and must oe rejected. (See section
2.3)

C45346A chtcks that NUMERIC ERROR is not raised if the length of the
result of catenation exceeds INTEGER'LAST or SYSTEM.MAX INT and that
CONSTRAINT ERROR or STORAGE ERPOR is raised instead.
NUMERIC/CORSTRAINT ERROR vas r'aised when an array of length
INTEGER'LAST/2 + 1 was declared.

C45531M..P (4 tests) and C45532M..P (4 tests) use a value for
SYSTEM.MAX MANTISSA of 47 or greater.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types; for this
implementation, MACHINE OVERFLOWS is TRUE.

C86001F recompiles package SYSTZM, making package TEXT 10, and hence
package REPORT, obsolete. For this implementation, the package TEXT IO
is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DUPRAT.^.*'BASE that are outside the
range of DURATION. There are no such values for this implementation.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

2-2

IMPLEMENTATION DEPENDENCIES

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method.

Test File Operation Mode File Access Method
CR2102D CREATE IN FILE SEQUENTIAL IO
CE2102E CREATE OUI FILE SEQUENTIAL 10
CE2102F CREATE INOUT FILE DIRECT 10C""
CE2102I CREATE IN FILE DIRECT-IO
CE2102J CREATE out FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL IO
CE21020 RESET IN FILE SEQUENTIAL I0
CE2102P OPEN OUT FILE SEoUENTIAL-iO
CE21020 RESET OUT FILE SEQUENTIAL-10
CE2102R OPEN INOST FILE DIRECT IO10"
CE2102R RESET INOUT FILE DIRECT-IO
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET INFILE DIRECT-IO
CE2102V OPEN OUT FILE DIRECT-IO
CE2102V RESET OUT FILE DIRECT-IO
CE3102E CREATE IN FILE TEXT I1
CE3102F RESET Any Mode TEXT-IO
CE3102G DELETE TEXT-IO
C3102G CREATE OUT FILE TEXT-IO
CE3102I OPEN IN FILE TEXT-IO
CE3102K OPEN OUT FILE TEXT-IO

CE2203A and CE2403A check that WRITE raises USE ERROR if the capacity of
the external file is exceeded, for SEQUENTIAL I and DIRECT 10
respectively. This implementation cannot resirict file capacity.

CR3304A checks that USE ERROR is raised if a call to SET LINE LENGTH orSET PAGE LENGTH specifiEs a value thati i inappropriate L tINe external
fSlE. Tis implementation does not have inappropriate values for either

line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. F., r this iiplementation, the value of
COUNT'LAST is greater than 150000 making the chiecking of this objective

impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 22 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in t•s way
expected by the original tests.

2-3

: : , :

IMPLEMENTATION DEPENDENCIES

B24009A B33301B B38003A B38003B B38009A B38009B
B85008G B85008H BC1303F BC3005B BD2BO3A BD2DO3A
BD4003A

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO; the compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST
as the range constraint of a floating-point type declaration because the
bounds lie outside of the range of safe numbers (cf. ARM 3.5.7(12)).

CD1009A, CD1009I, CD1CO3A, CD2A22J, CD2A24A, and CD2A31A..C (3 tests) use
Instantiations of the support procedure Length Check, which uses
Unchecked Conversion according to the interpretation given in AI-00590.
The AVO ruled that this interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce Failed messages only from the
instantiations of Length Check--i.e., the allowed Report.Failed messages
have the general form:

"* CHECK ON REPRESENTATION FOR <TYPE ID> FAILED."

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Steve Hodges
Verdix Corporation
14130-A Sully Field Circle
Chantilly, VA 22021

For a point of contact for sales information about this Ada implementation
system, see:

Steve Hodges
Verdix Corporation
14130-A Sully Field Circle
Chantilly, VA 22021

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3836
b) Total Number of Withdrawn Tests 60
c) Processed Inapplicable Tests 73
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 274 (c+d+e)

S) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 274 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were not loaded directly onto the host computer. The tape
was loaded onto a Sun Workstation and the tests were copied over Ethernet
to the host machine.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

-V Suppress generation of warning messages.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string-aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$BIGIDl (1..V-1 -> 'A', V a> '1')

$BIGID2 (l..V-l => 'A', V -> '2')

$BIGID3 (1..V/2 .> 'A') & '3' &
(1..V-l-V/2 a> 'A')

$BIGID4 (1..V/2 -> 'A') & '4' &
(1..V-I-V/2 ->'A')

$BIGINTLIT (1..V-3 -> '0') & "298"

$BIGREAL.LIT (1..V-5 -> '0') & "69.OEl"

$BIGSTRINGl '"' & (1..V/2 .> 'A') & '"'

$BIGSTRING2 '"' & (1..V-1-V/2 0> 'A') & '1' & '"'

S$LANKS (1..V-20 u> '

$MAXLENINTBASED..LITERAL
"2:" & (1..V-5 0> '0') & "11:"

$MAXLEN REALBASED LITERAL
"16:" & (1..V-7 0> '0') & "F.E:"

SMAXSTRINGLITERAL '"' & (1..V-2 0> 'A') & '"'

A-i

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$MAX-IN LEN 499

$ACC SIZE 32

$ALIGNMENT 4

$COUNT-LAST 2 147 483 647

$DEFAULT HEM SIZE 16 777 216

$DEFAULT STOR-UNIT 8

$DEFAULT SYS NAME DEC RISC

$DELTA-DOC 0.0000000004656612873077392578125

SENTRY-ADDRESS SYSTEM."+"(16#A#)

SENTRY ADDRESS1 SYSTEM."+"(16#B#)

SENTRY-ADDRESS2 SYSTEM."+"(16#C#)

SFIELD-LAST 2 147 483 647

SPILE-TERMINATOR '

$FIXED-NAME NO SUCH TYPE

SPLOAT-NAME NO SUCH TYPE

$PORM-STRING

$FORM STRING2 "CANNOT RESTRICT FILE CAPACITY"

SGREATER THAN DURATION
100 000.0

$GREATERTHANDURATI.ON BASE LAST
ToOo0000.0

SOREATERTHANFLOATBASE LAST
1.gE+3O8

$GETRTANFOTSF LARGE
5-fE307

$GREATER THAN SHORT FLOAT SAFE LARGE

A-2

MACRO PARAMETERS

9. 0E37

SHIGH-PRIORITY 99

$ILLEGAL EXTERNAL FILE NAME1
W/illegal/file name/2)1X2102C.DAT"

$ILLEGAL EXTXRNAL FILE NAME 2
W/illegal/file-name/CE21O2C*.DAT"

$INAPPROPRIATE LINE LENGTH
-1

SINAPPROPRIATE PAGE LENGTH
-1

$INCLUDE PRAGMA1 PRAGMA INCLUDE ("A28006D1 .TST")

$INCLUDE PRAGMA2 PRAGMA INCLUDE ("B28006Fl.TST-)

SINTEGER-FIRST -2 147 483 648

SINTEGER-LAST 2 147 483 647

$INTEGER l.A3T PLUS 1 2 147 483 648

SINTERFACE-LANGUAGE C

SLESS THAN-DURATION -100 000.0

SLESS THAN DURATION-BASE FIRST
-1000 000 .0

SLINE-TERMINATOR ASCII.LF & ASCII.FF

SLOW-PRIORITY 0

SHACHINE CODE STATEMENT
CODE O'(OP .> NOP);

SMACHINECODETYPE CODE 0

SMANTISSA-DOC 31

$MAX-DIGITS 15

$MAX INT 2 147 483 647

$MAX-INT-PLUS-1 2 147_483_1648

$MIN-INT -2_147_483_648

$NAME TINY-INTEGER

A- 3

MACRO PARAMETERS

$NAME-LIST DEC-IUSC

$NAM-SPCIFIATIN1 /sr/aliatio/tets/ce/X12/

$NAME-SPECIFICATION1 /usr/validation/tests/c/e/X2120A

$NAME-SPECIFICATION3 /usr/validation/tests/c/e/X3119A

$NEG BASED INT 16#FFFFFFFD#

$NEW HEM SIZE 16777216

$NEV STOR-UNIT 8

$NEVSYS NAME DEC-RISC

$ PAGE-TERMINATOR ASCII. FF

$RECORD-DEFINITION RECORD SUBP: OPERAND; END RECORD;

$RECORD-NAME CODE 0

$TASK-SIZE 32

$TASK STORAGE SIZE 1024

$TICK 0.01

$VARIABLE-ADDRESS VARY1ADDRESS

$VARIABLE ADDRESS1 VAR 21ADDRLESS

$VARIABLE ADDRESS2 VAR 3'ADDRESS

$YOUR-PRAGMA PASSIVE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler cption3 of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
othervise, references in this appendix are to compiler documentation and
not to this report.

B-i

ada

ada - Ada compiler

Syntax
ada[opOMI (SourCejlilel ... (linker optuons] (ob~ectf~le@.o ...

Options

40 denMIYqe w'e value (define) Define an identifier of a specified type and value. Soe
Cat~er 10, VAOS ADA PREPROCESSOR REFERENCE.

-a fie n'jre (archive) Treat ifi. jiame, as an object archive file created by or.
Since Some archive fl~es end withl .81 -a is used to distinguish
waile files from Ada source files.

-00G Write out the gnrxilb file In ASCII.
-d (dependencies) Analyze for dependencies only. Do0 not do

semantic analysis or code generation. Update the library mazlding
any~ defined units as wicoriiled. The -d option is used by eLnake
to 99=a1ll0 dependencies among new fi'les.

.4 ~~(analr Process corr~ilation erro mesages using Lorrat and sen~d
Nt to standard output Only the source lines containing errmr are
Mlstd Only one -e or 4E option should be used.

-11 direcory (eror output) Witout a file or directory argisnert ads processes
e1r0r messages usinlg Mieror &nd directs a brief output to stanidard
outpA the raw eror messages ame left In ads source.oen. If a file
pauuiwale is givein, the raw eroro messages are placed in that file.
If a directory argum~ent Is sup~plied. the raw errorutput is placed in
dir/spurce. air. The file of raw erro messages can be used as inpu
to aeffor. Only one -* or -E option should bue ied

-0 (eror listing) Inteirsperse error messages amnong source lines and
direct to standard output.

-El file
-El directory (eror listing) Same as the -E option, except tiat source listing witht

error Is produced.
-a, ~~(erWo V1(1)) Process; SyntaX erro Messages Us"n Lenor, embted

therm in tie source file, and call fte enrwonmerit editor
ERROR -EDITOR. (if ERROREDITOR is defined, mie ermirorurent
vuariale ERROR-PATTERN should also be defined.
ERROR PATTERN is an editor search comarnad tIa locates the
firstoccfrmce of 4", inthe error file.) itno edwito lepecfled, vl(1)
Is invoked.

-K (keep) Keep the uritermediate language (IQ) file produced by the
corr~iier frot end. The IL fi'le Mil1 be placed V4t he .objects
directory, with the Mie name Ada sourice.1

-L fibrai'y name (library) Operate in VADS library fibrawyname (the o.Jrrent working
directory is thle Cefault).

_0-ml. a 1viation (l1brary searcn) This is an option passed to the UNIX linker, ld(l)
telling it to searcm mie specified library file. (No saebetween the
-4 and Mie rile a~oeviation.)

B-2

ada

For a dsealptio of tie file abbrevilldrs, we also Operating
system docuz ertaton 14d().

-M &Ui nae Plain) Produ~ce an eascuable prograrn by IlnWV ti namned unit as
lofie ulpioga~m. ax ~r n.xmemutarudy beonwlled It mus be
oili~er a pararnaeriless procediure or a pxwunretels Auxction.
meaning an bintger. The executable progrmi vil be namned aout
U*=s OMeslddn witM te -* option.

-M wO&M'Ne "We(mi) Prodace an execuioat programntry =V Uing and Unking
souce fio. The maiin unilt of tie progearn Is aseiied to be toe root
nUMame toe.& file (Mo 1100.8 tie MR Is ftc). Or one.8 file (May be

prcddby -M. The execuable Pro98am WO be nMer$d SLOut
wiesoverridden wfl te -o option.

-0 -zwcutablejlle0 (outpol Ttfs option Is to be used in con~j%%~mwMt tie -M option.
avecia" e fie atoe namne of "i executableraerffan ti default

&AW

-0(0-01 (optim&z) Invoke Toe code optmizer (OP1hM. An optional dIgIt
(Mere is no space before tie digit proldes toe level of
opti~omztor The def&Au Is -04.

-0 aull optimization
-00 prievents optimnIzAtion
-01 no Woisting
-02 no hoisting Mh morea paisse
-03 no 1o101ing bti ~ve mom Passe
-04 hoistng from lo"p
-of hOisting from loops but MII Passes
-061 ho4 frm l0ops WfhM1i~ndw Pa810e1
-07 hoisting from loops ambnchmiie
-06 hoisting frmM loops; aid 1randKes, MOre

Pamse
h" oisin "rm lops and bhmnchies, Mawtmirn
pan"e

Hoistin from bwieai (and cases alternattv"s can be slow and
does not a0"y provide significarl perorkman gaftnso5 it can be

Far morI rimti-on about optimization. se COMPIUNG ADA
PROGPAA1S. C*70w Oprdouztaftu on page (JO 4-3. Se. also
pregmas OPTNAZECOE(OFF) on page PGF-4-

-P invoke toe Ad@ eprrocessor So Chopw 10, VADS ADA
PREPROCESSOR REFERENCE.

-R VADS"Jibaq (ecornpile ntanlaflon) Force ana&"s& of ag geuric Instantiationts.
cAsing rme andaon of way VWa awe owt of dale.

4 (u~ppruss) Apoy pragma SUPPRESS to tie s~e cornpilation for
al s4,pissVl Cctuki (See also prigma,
SUPPRESS4ALLCHECKS) on page PG F-S

-T (ikrlng Pr*t tbreq rtormation for tie cornpolaou.

ada

-v (wboae) PMr wornllar version rufter, date and timeo Of
*vimplastion, arne of file cowpiled. conmmand kPA line. total
comnpilation mai, ard eswo vmimny line. Storage usage
infoialion about fte bject file Is provide. WIt' OPTIM3 tIe
omupi oralmaofcornpression (MW size of optimizeod hisbudons) Is
as a percentage of Input (Lunoptirmized Instructions).

-W ovariungs) SlP~ross Warning dsgiostics.

Description
The coffnad a"a execues tie Ada corynpller and compiles fte namned Ada2 soixe file6, enoIng with
rae.a sufbL The file mnust reside in a VADS IbrmydWKedoy. The adali file in this dilrectory Is mnodfed
afe eaCh Ada unilt Is comnpiled.

B3ydefault, ada piodu~cus only object and net files. Iftie-M option Is used, tie comnpler automiatically
invokes aMd and builds a comnplete prO9anWMi wto r nmed library Unilt as fti Main PrOgaeni

Non.-Ada object: flies (.o fliles prodcejcd by a comp lier for anotier language) may be given as
arguhlets to ads. These fliles vill be passed on to tIe linker and will be linked with tie specified Ada
object fi'les.

Corwland line options May be spanifled hin any Cider, but t ie dode of ompilatio and fti order of
fte f'les to be passed to ie linker can be sligificanlL

Several VADS compilers may be sknui~tieously available on a single sysam. Because fti ads
C011110Iand isyVADS !oCa6cWibbIMon8 a t1 V~itni if X0CU1*tie1 correc nop~lWC0r c Onioe based
upon visible Wabry directivres, Tie option -eli IS PrVided to print tie namne of tie comnponents mcbaisly
moexeue

P.09an listings with a disasseri" of machine code kwuudlon am genrwated by aLdb or ad"s.

See Malo adas on paye UG 8-4P. Ld on page UG 8-7; aLerrm on page UG B-10: Lid on page
tJG 8-14; axndft an page LA 8-21; aid Operating Systannirfurnc documentation for tie ld(l)
Utility.

Diagnostics
The diagnostics prodcexd by the VADS compi*arwe uitnde to be sefl-expW"atr. Most refr to
Mie AM. Each RM reference incude a section nurrow mid optionally, a paragraph flt vhiernclosed
hin paseniees".

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
othervise, references in this appendix are to linker documentation and not
to this report.

B-5

WKWOMME W~

a.id

2.id - prelmnker

Syntax
a. id~ !opednj uný_nan'ie (Id optronsl

Description
aid collectstrme object mes needied to maire urWn~it a main programn and calls me UNIX linkerkld()
to link together all Ada and other language oW;ects re~ired to produce an executable image in 5.OuL
uw tnaririe is mea main program and must name a non-gerienc subprogram. if unit names is a fkintiwn
irtZMitust rs a value of me typ STANDARD. INTEGER. This irteger result will be ̀ passed back to the
UNIX sI UlVias me11 salsCode Of me execution. The utility uses Me net file. produced by mhe Ada

coiiier to chleck dependency information, a&d produces an exception mapping table and a wnit
elsaborat~on table and passes this informaion to mea linker.

aid reads instructions for generating executable. from me ada.lm file in me* VADS libraries on re
search list. Besides wiformation generated by Via co~iler, me.. directives also include WITh-n
dircftves Mat allow me au~tomatic linking of object module. conriiled from oamer languages of Ada
object modUles not named in cointext clause in me Ada source. Any number of YATHn directives may
be placed into a library, but mey Must be nMrT~ered con~tiguousl begitlng at Wi"hI. The dOrectiv
we recorded in me libray's ada.f file and haw e tefollowing form.

VZTK: I.fINK: objeci:Jde:
WITH2: LfINK: arc hive Jile:

WiChi d~rectves may be placed in me koca Ada libraries or in "n VADS llhrary on mhe search lIst

A WlTtHr directive in a local VAOS library or earlier on mhe library search list will lide mea samie
fluMbeed WTTA directive in a library late in mie library search lIst

Use the tool ainfo to Mhange or repor library directve in Me curent libirar.

AlN wgumnenft alter wnr name are passed on to mhe like. These may be options for It, archive libraries,
library abbrevation, or Object Mfie.

VAOS foaolbbaMd Is a wrappe program tiat executes me corred ct eeeble based tvon
dlirecties visible in me adaib file. This permits multiple VAOS cornpilers to exist on mhe Sari fQlo.
The -elt option prin tse name of me actual excutable file.

Options

-DX (debug) Debu memory ovefm (use In cases wiere linking a lorgo
numahber of units causes me erorm message 'local syntoJ overflow'

-9 urvt name (ela1borae) Elaborate unfl-rname as early In fte elaboration order as
possible.

-F (fliles) Print a list of dependent flies in or"d and suppress linking.
-L libryarynme Plibrary) Operate in VADS library llbraty narm (Me Maiert Woriking

directory is me default).
-0 executabie fil (Mo utpt se mie Specified fle* narre as b ae namne offte outptralher

mran mea default. aLout
-sit ~(s"ow Display me name of me tool executable but do not execute

It.

aid

-u (1mb) PM~i a list ot depedet Llts in order and uannus lIfing.
-V (Verbose) P"in iem inker comvma betor exbaAvn it.
-V tieri" P"rIW tie e command but siprm amcutlon.

F11"s

86.09 d~fait Apu1`1l0
.r16W Ada DMAA not fliles directory
.objeewen Ada Object fIles
VAO;_ocamonlgndwrvjj go"lL arid "tanard lbrary routines

ee -@o Operadng sysem dcwnenfaOv, ld(l).

SWeVsplawiaory dlagiostcs are pod~cod for missing files. etc. Occasona acddtional messages
we produced by lie Ifter.

B-7

7W~ -777

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768., 32767;
type TINYINTEGER is range -128 .. 127;

type FLOAT is digits 15 range
-16#0.1FFFF2FFFFFFFF# .. 16#O.1FFFFFFFFFFFFF#;

type SHORT-FLOAT is digits 6 range -16#0.FFFFFF# .. 16#O.FFFFFF#;

type DURATION is delta 0.001 range -2147483.648 .. 2147483.647;

end STANDARD;

C-1

ATTACHMENT I

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Progmas

1.1. INLINE ONLY Pragma
The V LINE ONLY pragma. when used in the same way as pragnma INLINE. indicates to the compiler
that the subprogram must always be mnlined. This pragma also spyxsses the generation of a callable
version of the routine which saves code space. If a user erroneously makes an INLINE ONLY subpro-
grain recursive a warning message will be emitted and an PROGRAM-ERROR wiLl be raised at run
time.

1.2. BUILT IN Pragms
The BUILT IN pragrma is used in the implementation of some predefined Ada packages, but provides
no user access. It is used only to implement code bodies for which no actual Aca body can be pro-
vided, for example the MACHINE CODE package.

1-3. SHARE _CODE Praglm
The SHARE CODE prngma takes the name of a generic instantiation or a generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument. This pragma is only allowed
immediately at the place of a declarative item in a declarative pan or package specification, or after a
library unit in a compilation but befoe any subsequent compilation UniL
When the fr argument is a generic uwit the pragrue applies to all instuntiations of that generic. When
the first argument is the name of a generic instantation the pragma applies only to the specified insun-
tiaaon, or overloaded insuanations.
If the second argument is TRUE the compiler will try to share code generated for a generic instantia-
uon with code generated for other insuantatons of the sane generic. When the second argument is
FALSE each instantiauon will get a unique copy of the generated code. The extent to which code is
shared between instanuations depends on this prague and the kind of generic formnal parameters
declared for the generic unit.

The name pragma SHARE-BODY is also recognized by the implementation and has the same effect as
SHARE CODE. It is included for compazabilty with earlier versions of VADS.

1.4. NO IMAGE Pragme
The pragmna suppresses the generation of the image array used for the IMAGE attibute of enumeration
types. Th1is eliminates the overhead required w store the amy in the executable image. An attempt to
use the IMAGE attribute on a type whose image array has been suppressed will result in a compilation
warning and PROGRAM ERROR raised at rtn time.

1.5. EXTERNAL-NAME Prague
The EX".NAL NAME pragmn takes the name of a subprogram or variable defined in Ada and
allows the user to specify a different external name that may be used to reference the entity from other
languages. The pragma is allowed at the place of a declarative item in a package specification and
must apply to an object declared earlier in the same package specification.

C-2

1.. INTERFACE NAME Pragma
The NThERFACE NAME pragma takes the name of a a variable or subprogram defined in another
language and allows it to be referenced directly in Ada. The pragma will replace all occurrences of the
variable or subprogram name with an external reference to the second, link-argument. The pragma is
allowed at the place of a declarative item in a package specification and must apply to an object or sub-
program declared earlier in the same package specification. The object must be declared as a scalar or
an access type. The object camot be any of the following.

a koop varable.
a constant.
an initialized variable,
an array, or
a record.

1.7. IMPLICIT CODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed within a
machine code procedure. It specifies that implicit code generated by the compiler be allowed or disal-
lowed. A warning is issued if OFF is used and any implicit code needs to be generated. The def3ult is
ON.

1±. OVTIMIZE CODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed within a
machine code procedure. It specifies whether the code should be optimized by the compiler. The
default is ON. When OFF is specified, the compiler will generate the code as specified.

2. Implementation oa Predefined Pragmas

2.L CONTROLLED

This pragma is recognized by the implementation but has no effect.

= ELABORATE

This pragma is implemented as described in Appendix B of the Ada RM.

2.3. INLINE

This pragnma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE

This pragma supports calls to 'C' and FORTRAN functions. The Ada subprograms can be either func-
tions or procedures. The types of parameters and the result type for functions must be scalar, access or
the predefined type ADDRESS in SYSTEM. All parameters must have mode IN. Record and array
objects can be passed by reference using the ADDRESS atribute.

..S. LINK WITH
Can be used to pass argument to the target linker. It may appear in any declarative part and accepts
one argument. a constant swing expression. This argument is passed to the target linker whenever the
unit containing the pragma is included in a link.

2.6. LIST

This pragma is implemented as described in Appendix B of the Ada R.M.

2.7. MEMORY SIZE

This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

C-3

2.8. NON REENTRANT
This pragna takes one argument which can be the name of either a library subprogram or a subprogram
declared immediately within a library package spec or body. It indicates to the compiler that the sub.
program will not be called recursively allowing the compiler to perform specific optimizations. The
pragma can be applied to a subprogram or a set of overloadied subprograsm within a package spec or
package body.

2-9. NOT-ELABORATED

This pragma can only appear in a library package specification. It indicates that the package wdl not
be elaborated because it is either part of the RTS, a configuration package or an Ada packag-e that is
referenced from a language other than Ada. The presence of this pragna suppresses the generation of
elaboration code and issues warnings if elaboration code is required.

2.10. OPTIMIZE
This pragma is recognized by the implementation but has no effect.

2.11. PACK
This pragma will cause the compiler to choose a non-aUgned representation for composite types. It will
not causes objects to be packed at the bit level.

2.12. PAGE
This pragma, is implemented as described in Appendix B of the Ada RM.

2.13. PASSIVE
The pragma has three forms:

PRAGMA PASSIVE;
PRAGMA PASSIVE(SEMAPHORE).
PRAGMA PASSIVE('NTERRUPT. <number>.);

This pragr.a Pragma passve can be applied to a task or task type declared immediately withain a library
package spec or body. The pragna directs the compiler to optimize certain tasking operations. It is
possible that the statements in a task body will prevent the intended optimization. in these cases a warn-
ing will be generated at compile time and will raise TASKING-ERROR at runinie.

2.14. PRIORITY
This pragnma is implemented as described in Appendix B of the Ada RM.

2.15. SHARED
This pragma is recognized by the implementation but has no effect.

2.16. STORAGEUNrT
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.17. SUPPRESS
This pragna is implemented as described, except that DIVISION-CHECK and in some cases
OVERFLOW-CHECK cannot be supressed.

C-4

2.12 SYSTEM-NAME
This pragma is recognized by the implementation. Thbe irnplemen~t;ion does not allow SYSTEM to be
modified by means of pragmas. the SYSTEM package must be recompiled.
3. Imnplementation-Dependent Attributes
3.1. P'REF

For a prefix that denotes an object, a progrm unit, a label, or an enay.

This attribute denotes the effective address of the first of the storige wunit allocated to P. For a subpro-
gram, package, task unit, or label, it refers to the addres of Lhe machine code associated with the
corresponding body or statemient. For an entry for which an addes clause hazz been given. it refers to
the corresponding hardware interupL The attibute is of the type OPERAND defined in the package
MACHINE CODE. The attribute is only allowed within a machine code procedure

See section F.4.8 for more information on the use of this attribute.

(For a package, task unit, or entry, the 'REF attribute is not supported.)

3.2L T`TASKCID
For a task object or a value T. TTASK MD yields the unique task id associated with a task. The value
of this attibute is of the type ADDRESS ii fth package SYSTEM.

4. Specification Of Package SYSTEM

**ekseg SYTS1 Is

puesd $UP9FXSS(ALLO6RC3:'
p:: JIUPMMS (LVWTI IVYAMU).

typo 141 if C deasulre)

MMflW~ll 6*60tseu NA%6 :- deeps-rso

STORA WI~T ::::"::: 11 .
seg, .I717_216;

bkx- INT I assets*l * 247 411344?;
bax-DIGITS foosteul :0 11:-
MiX JOWTISSA : sees 12:

TICK : osestes 1. 0.03s

subtype p~tICZ1Y is IN?1CII1 feestt 0 .. 991

34112c.Sim : icsisse ;- 44-1024:

type OC1121 is poi.41t.;

f::::l.- tI A' A=1SS:3m AMUS s1is jA

Isci... . A: ACCRU, ;m AC.315) NeOsCULAX3:

fece .5 P (Am ACCR83: : ACN'TIS) 'e ss A XI :

to... ie (As ACCRIS : IPE'IMG3) twists AC3S:

oseslise, (A: A1CI;IGTS.I!INTn Ofoists rotrs CSS;

foostioe bhbC ACCfS

(I,: UNSICN16-TYM J.L1,S3-IW!1) retcs- AC3S t~sGs,

POA . essiose AWIRSS:

C-5

p0 TKl[10 is private:
OTASK ID : sees.".' TASI[tD:

sype P11 D is privet,:

type ASRS• is moe UwESIG41U.SIUeSI mImm:Nr•MI

NO ACCIN : "dol.t AIZJMS :- 0:

Venom ZUILTItX'*)*)
proem IUILTIN(*-c')-

prosm WILT ie:")premp 1UILTIN(*o.*).

type TASK ;D i taeiw tW5I@M 1`S.tW(IG41I~fTZWn
30 AU.11 i: sessions TASK*16 !- 0.

'pf Pl * IDTL IN(e-* IZSG ;SWI~I~~

*aiQPMB eeis ~ D .
end SYS1M

5Restlrctions On Representation Clauses

5.L Pragima PACK

In the absence of pragma PACK record components are padded so as to provide for efficient access by
the target hardware, pragma PACK applied to a record eliminate the padding where possible. Pragma
PACK has no other effect on the swomge allocated for record conmponents a rerord representation is
require4.

5.2. Size Clauses

For scalar types a representadon clause will pack to the number of bius required to represent the range
of the subtype. A size clause applied to a recod type will not cause packing of component an expli-
cit record representation claise must be given to specify the packing of the components. A size clause
applied to a record type will cause packing of components only when the component type is a disrete
type. An eixu will be issued if there is insufficient space allocated The S12 aribute is not sup-
ported for task. access, or floating point types.

5.3. Address Clauses

Address clauses are only supported for variables. Since defauht initiaization of a variable requires
evaluation of the variable address elaboration ordering requireents prohibit initimlization of a variables
which have address clauses. The specihed addess indica the physical address associated with the
variable.

5A. Interrupts

Interupt entries are not suppored.

5.5. Representation Attribute

The ADDRESS attribute is not upported for the following enuues

Packages
Tasks
Labels.
Entries

S.6. Machine Code Insertions

Machine code insertions are supported.

C-6

The reneral dehirtion of the package MACHINE CODE provides an assembly language interface for
the trget machine. It provides the necessary record type(s) needed in the code statement, an enumera-
tion type of all the opcode mneunonics, a set of register definitions, and a set of addressing mode fune-
tions.

The general syntax of a machine code stazement is as follows:

CODE.n'(opcode, operand (, operand));

where n indicates the number of operands in the aggregate.

A special case arises for a variable number of operands. The operands are listed within a subaggregate.
The format is as follows:

CODE W(opcode. (operand (. operand)))

For those opcodes that require no operands, named notation must be used (cf. RM 43(4)).

CODE_0'(op -> opcode);

The opcode must be an enumeration literal (Le. it cannot be an object. awwioute, or a rename).

An operand can only be an enuity defined in MACHINE CODE or the 'REF auribute.

The arguments to any of the functions defined in MACHINE CODE must be static expressions. sting
literals, or the fictions defined in MACHINECODE. The 'REF attibute may not be used as an argu-
ment in any of these fincions.

Inline expansion of machine code procedures is supported.

6. Conventions for Implementation-generated Names

Ther we no implementation-generaed names.

7. Interpretation of Expressions In Address Clauses

Address expressions in an ad clause ae interpreted as physical address

L Restictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

None.

10. Implementation Chanrcteristics of I1O Packages
InstantiauonA of DIRECT 10 use the value MAX REC SrE as the record size (expressed in
STORAGE UNITS) when the size of ELEMENT TYPE exceeds that value. For example for uncon-
strained arrays such as suing where ELEMENT .'ESIZE is very large. MAX REC SUE is used
instead. MAX RECORD SIZE is defined in SYSTEM and can be changed by a program before
instandating DIRECT _O to provide an upper limit on the record size. In any case the maximum size
supported is 1024 x 1024 x STORAGEUNIT bits. DIRECT.10 will raise USE-ERROR if
MAXREC.SIZE exceeds this absolute limit

C-7

•p

Insutnuaions of SEQUENTIAL 10 se the value MAXREC SIZE as the record size (exxessed in
STORAGE UNITS) when the sue of ELEMENT TYPE exceeds that value. For example for uncon-
srained arrays such as sting where ELEMENT TYPE'SIZE is very large, MAXRECSIZE is used
instead. MAX RECORD SIZE is defined in SYSTEM and can be changed by a program before
instandating 2MGER-10 to provide an upper limit on the record size. SEQUENTIAL_ 0 imposes no
limit on MAX REC SIZE.

1L Implemeztation Limits

The following limits are actually enforced by the implementation. It is not intended to imply that
resources up to or even near these limits am available to every progrmn.

11.1. Line Length

The implementation supports a maximum line length of 500 characters including the end of line charac-
tea.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is 4.000.000 x STORAGE UNITS. The maximum
size of a statically sized record type is 4,000,000 x STORAGEUNITS. A record type or array type
declaration that exceeds these limits will generate a warning message.

113. Default Stack Sim for Tasks

In the absence of an explicit STORAGE SIZE length specification every task except the main program
is allocated a fixed size stack of 10,240 STORAGE UNITS. This is the value returned by
TSTORAGE-SIZE for a task type T.

11.4. Default Collection Size

In the absence of an explicit STORAGE SIZE length attribute the default collection size for an access
type is 100 tines the size of the designated type. This is the value returned by TSTORAGESIZE for
an access type T.

IL3. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE UNITS for objects declared statically within a
compilation unit. If this value is exceeded the compiler will terminate the compilation of thie unit with a
FATAL error message.

C-8

